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Abstract In this chapter, we present a system-level framework for designing
minimal deterministic routing algorithms for Networks-on-Chip (NoCs) that are
customized for a set of applications. To this end, we first formulate an optimization
problem of minimizing average packet latency in the network and then use the
simulated annealing heuristic to solve this problem. To estimate the average packet
latency we use a queueing-based analytical model which can capture the burstiness
of the traffic. The proposed framework does not require virtual channels to guarantee
deadlock freedom since routes are extracted from an acyclic channel dependency
graph. Experiments with both synthetic and realistic workloads show the effective-
ness of the approach. Results show that maximum sustainable throughput of the
network is improved for different applications and architectures.

2.1 Introduction

Thanks to high performance and low power budget of ASICs (application specific
integrated circuits), they have been common components in the design of embedded
systems-on-chip. Advances of semiconductor technology facilitate the integration
of reconfigurable logic with ASIC modules in embedded systems-on-chip. Recon-
figurable architectures are used as new alternatives for implementing a wide range
of computationally intensive applications, such as DSP, multimedia and computer
vision applications [1]. In the beginning of the current millennium, network-on-
chip (NoC) emerged as a standard solution in the on-chip architectures [10, 11].
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In network-based systems, the performance of the communication infrastructure
is critical, as it can represent the overall system performance bottleneck. The
performance of networks depends heavily on the routing algorithm effectiveness,
since it impacts all network metrics such as latency, throughput, and power
dissipation.

Routing algorithms are generally categorized into deterministic and adaptive.
A deterministic routing algorithm is oblivious of the dynamic network conditions
and always provides the same path between a given source and destination pair. In
contrast, in adaptive routing algorithms, besides source and destination addresses,
network traffic variation plays an important role for selecting channels to forward
packets. However, adaptive routing may cause packets to arrive out-of-order since
they may be routed along different paths. The re-order buffers needed at the
destination for ordering the packets impose large area and power on system [18].
Deterministic routers not only are more compact and faster than adaptive routers
[5], but also guarantee in-order packet delivery. Therefore, it is not surprising that
designers would like to use deterministic routing algorithms in the NoCs which
suffer from limited silicon resources. However, in deterministic routing a packet
cannot use alternative paths to avoid congested channels along its route; this leads to
degraded performance of the communication architecture at high levels of network
throughput.

A well-designed routing algorithm utilizes the network resources uniformly as
much as possible and avoids the congested channels, even in the presence of non-
uniform traffic patterns, which are usual in the embedded systems. In this chapter,
we propose a system-level Latency-Aware Routing (LAR) framework for designing
minimal deterministic routing algorithms for network-based platforms. Especially,
LAR is appropriate for reconfigurable embedded systems-on-chip which host
several applications with high computational requirements and static workloads. To
the best of our knowledge, the proposed framework is the first one to deal with
traffic burstiness. Before the execution of a new application, the routing tables are
configured with pre-computed routes, as well as other components in the system.
After selecting the route and adding it to the packet, no further time is needed
on routing at the intermediate nodes along the path. Due to advantages of table-
based routing, it is one of the most widely used routing methods for implementing
deterministic routing algorithm, e.g., IBM SP1 and SP2 [5].

LAR uses a recently proposed analytical model in [14] to calculate the average
packet latency in the network. The results obtained from simulation experiments
confirm that the proposed routing framework can find efficient routes for various
networks and workloads.

The rest of the chapter is organized as follows. We start by reviewing previous
studies in Sect. 2.2. The proposed heuristic framework is proposed in Sect. 2.3.
Experimental results in Sect. 2.4 show that our proposed approach can improve the
system performance. Finally, concluding remarks are given in Sect. 2.5.
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2.2 Related Work

Turn model for designing partially adaptive routing algorithms for mesh and
hypercube networks was proposed in [9]. Prohibiting minimum number of turns
breaks all of the cycles and produces a deadlock-free routing algorithm. Turn model
was used to develop the Odd-Even adaptive routing algorithm for meshes [4]. This
model restricts the locations where some turns can be taken so that deadlock is
avoided. In comparison with turn model, the degree of routing adaptivity provided
by the Odd-Even routing is more even for different source-destination pairs.

DyAD routing scheme, which combines deterministic and adaptive routing, is
proposed in [12] for NoCs, where the router works in deterministic mode when
the network is not congested, and switches to adaptive mode when the network
becomes congested. In [23] the authors extend routers of a network to measure their
load and to send appropriate load information to their direct neighbors. The load
information is used to decide in which direction a packet should be routed to avoid
hot-spots. Recently, the authors in [19] present APSRA, a methodology to develop
adaptive routing algorithms for NoCs that are specialized for an application or a
set of concurrent applications. APSRA exploits the application-specific information
regarding pairs of cores that communicate and other pairs that never communicate
in the NoC platform to maximize communication adaptivity and performance.

Since all of these approaches are based on adaptive routing, they suffer from out-
of-order packet delivery. Our proposed routing framework overcomes this problem
while it minimizes the average packet latency across the network.

An application-aware oblivious routing is proposed in [14] that statically de-
termines deadlock-free routes. The authors presented a mixed integer-linear pro-
gramming approach and a heuristic approach for producing routes that minimize
maximum channel load. However, in case of realistic workload, they did not
study the effect of task mapping on their approach. Also, we have addressed the
congestion-aware routing problem in [15]. With the analysis technique, we first
estimated the congestion level in the network, and then embedded this analysis
technique into the loop of optimizing routing paths so as to find deterministic routing
paths for all traffic flows while minimizing the congestion level in the network.
Since this framework cannot capture the traffic burstiness, in this work we utilize an
analytical model [14] to deal with traffic burstiness.

2.3 LAR Framework

The LAR framework consists of five steps as its flowchart is shown in Fig. 2.1.
At first, we represent the architecture and application using topology graph (TG)
and communication graph (CG), respectively. Then we construct the channel
dependency graph (CDG) based on TG and CG. In the third step, an acyclic CDG
is extracted by deleting some edges from CDG to guarantee the deadlock freedom.
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After that, we find all possible shortest paths for each flow to create the routing
space. Finally, we formulate an optimization problem over the routing space and
solve it. In the following subsections, each step is described in detail.

2.3.1 Model Architecture and Application

In order to characterize network performance, a network model is essential. As
shown in Fig. 2.2, a directed graph, which is called Topology Graph (TG), can
represent the topology of an NoC architecture. Vertices and edges of TG show
nodes and links of the NoC, respectively. Every node in TG contains a core and
a wormhole-switched router. Such cores are local computing or storage regions,
which may contain a processor, a DSP core, a configurable hardware, a high-
bandwidth I/O controller, or a memory block. Each core is equipped with a Resource
Network Interface (RNI). The RNI translates data between cores and routers by
packing/unpacking data packets and also manages the packet injection process.
Packets are injected into the network on injection channel and leave the network
from ejection channel. We consider the general reference architecture for routers
[7], where a routing logic determines the output channel over which the packet
advances. Routing is only performed with the head flit of a packet. After routing
phase, a crossbar switch handles the connections among input and output channel.

An application can be modeled by a graph called Communication Graph (CG).
CG is a directed graph, where each vertex represents one selected task, and each
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Fig. 2.3 CG of a video object plane decoder (VOPD) application [24]

directed arc represents the communication volume from source task to destination
task. As an example, the CG of a video object plane decoder (VOPD) is shown in
Fig. 2.3 [24]. Each node in the CG corresponds to a task and the numbers near the
edges represent the bandwidth (in MBytes/s) of the data transfer, for a 30 frames/s
MPEG-4 movie with 1,920× 1,088 resolution [24].

2.3.2 Construct Channel Dependency Graph

Dally and Seitz simplified designing deadlock-free routing algorithms with a proof
that an acyclic channel dependency graph (CDG) guarantees deadlock freedom [6].
Each vertex of the CDG is a channel in TG. For instance, vertex 01 in Fig. 2.4
corresponds to the channel from node 0 to node 1 in Fig. 2.2. There is a directed
edge from one vertex in CDG to another if a packet is permitted to use the second
channel in TG immediately after the first one. To find the edges of a CDG, we use
the Dijkstra’s algorithm to find all shortest paths between source and destination
of any flows in corresponding TG. CDG of a 4× 4 mesh network (Fig. 2.2) under
minimal fully adaptive routing is shown in Fig. 2.4a, when any two nodes have the
need to communicate such as in the uniform traffic pattern.

2.3.3 Remove Cycles from CDG

Traditional routing algorithms, such as dimension-order routing (DOR) and turn
model, extract an acyclic CDG by systematically removing some edges from the
CDG regardless of the traffic pattern. This may result in poor performance of
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Fig. 2.4 The CDG of 4× 4 mesh network for minimal fully adaptive routing under (a) uniform
and (b) transpose traffic patterns

Table 2.1 Number of cycles
in CDG of mesh networks

TG
Number of cycles in
corresponding CDG

Mesh (2× 2) 2
Mesh (2× 3) 8
Mesh (3× 3) 292
Mesh (3× 4) 14,232
Mesh (4× 4) 6,982,870
Mesh (4× 5) 3,656,892,444

routing algorithm due to prohibition of unnecessary turns. For instance, as shown in
Fig. 2.4b, there is no cycle in CDG of 4× 4 mesh network under transpose traffic
pattern, which the node in row i and column j sends packets to the node in row j
and column i. However, traditional routing algorithms conservatively remove some
edges from the CDG.

We modify the depth-first-search (dfs) algorithm to find cycles in a given CDG.
Since we want to remove minimum number of edges, we delete an edge from
the CDG which is shared among more cycles. Note that, this edge is removed if
the reachability of all flows is guaranteed. For example, in a CDG of 4× 4 mesh
network, shown in Fig. 2.4a, there are 6,982,870 cycles and the edge from vertex 40
to vertex 01 is shared among 5,041,173 cycles. Thus by removing this edge from the
CDG, the number of cycles is considerably reduced to 1,941,697. These steps are
repeated again while there is no cycle in the CDG. Table 2.1 shows the numbers of
cycles found by LAR in the CDG of different mesh networks. As it can be vividly
seen, number of cycles is exponentially grown with the size of the TG and it takes a
long time to find all cycles in the CDG. Hence, we find cycles in the CDG till certain
number of cycles, and then remove an edge from the CDG which is shared among
more cycles.
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2.3.4 Create Routing Space (RS)

In this step, we apply Dijkstra’s algorithm to the acyclic CDG to find all shortest
paths between source and destination of flows in corresponding TG and create a set
of f flows RS= {F1,F2, . . . ,Ff } where f is the number of all flows in the system.
Fi = (λi,CAi ,ni,Pi ), where λ i is the average packet generation rate and CAi is the
coefficient of variation (CV) of packet interarrival time for flow i. We remind that
the relationship between CV of random variable X and its moments is represented
by C2

X = x2/x̄2 − 1. In [14], we show that CV of a random variable reflects the
burstiness intensity very well. ni is the number of available shortest paths for flow i
and Pi is itself a set and includes all ni routes for flow i.

Usually more than one shortest path is available between two nodes (ni > 1) in
the routing space RS, so it is reasonable to choose a path such that the average packet
latency is minimized. In the next subsection, we formulate an optimization problem
over RS to find a suitable route for each flow and then use the simulated annealing
heuristic to solve this problem.

2.3.5 Routing Space Exploration

2.3.5.1 Define Optimization Problem

In this subsection, we define an optimization problem to explore the routing space of
RS. It is essential to define decision variables and objective functions in formulating
an optimization problem. Our goal is to select a path for flow i (1≤ i≤ f ) among
ni available paths to minimize the average packet latency. Therefore, we define
X = {x1,x2, . . . ,xf} as decision variables in the space of RS where xi refers to a path
number for flow i (1≤ xi ≤ ni) and the average packet latency as objective function.

The use of simulation experiments makes the task of searching for efficient
designs computationally intensive and does not scale well with the size of networks
since the search space of such a problem increases dramatically with the system size.
Therefore, it is simply impossible to use the simulation in optimization loops. In the
following subsection, we use an efficient analytical model to find nearly optimal
solutions in reasonable time.

2.3.5.2 Analytical Latency Model

If the performance of a routing algorithm is measured in terms of average packet
latency, then maximizing the performance means, in fact, minimizing the end-
to-end packet latency. In this section, we briefly review a recently proposed
analytical performance model which estimates the average packet latency in on-chip
networks [14].
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In a wormhole switched network, the end-to-end delay of a packet consists of
two parts: the latency of the head flit and the latency of the body flits which follow
the header flit in a pipelined fashion. The average latency of the head flit can be
computed as the sum of delays at each hop, clearly, the link delays the head flit
experienced and the residence times of the head flit in each of the routers along the
path. Therefore, generally the only unknown parameter for computing the average
packet latency is the mean waiting time for a packet from input channel i to output
channel j in router N (W N

i→ j). Using a G/G/1 priority queueing model, we estimated
this value by [14]

W N
i→ j =

⎧
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(2.1)

where the variables are listed in Table 2.2 along with other parameters used in
this chapter. Therefore, to compute the W N

i→ j we have to calculate the arrival rate

from ICi
N to OCj

N (λ N
i→ j), and also first and second moments of the service time

of OCN
j

(

S̄N
j ,
(

sN
j

)2
)

. In the following two subsections, packet arrival rate and

channel service time are computed.
Assuming the network is not overloaded, the arrival rate from ICi

N to OCj
N can

be calculated using the following general equation

λ N
i→ j = ∑S∑D

λ S ×PS→D ×R
(
S → D, ICN

i → OCN
j

)
(2.2)

In Eq. 2.2, the routing function R(S→D, ICi
N →OCj

N) equals 1 if a packet from
IPS to IPD passes from ICi

N to OCj
N ; it equals 0 otherwise. Note that we assume a

deterministic routing algorithm, thus the function of R(S→D, ICi
N →OCj

N) can be
predetermined, regardless of topology and routing algorithm. After that, the average
packet rate to OCj

N can be easily determined as

λ N
j =∑iλ

N
i→ j (2.3)

After estimating the packet arrival rates, now we focus on the estimation of the
moments of channel service times. At first, we assign a positive integer index to each
output channel. Let Dj

N be the set of all possible destinations for a packet which
passes through OCj

N . The index of OCj
N is equal to the maximum of distances

among N and each M where M ∈Dj
N . Obviously, the index of a channel is between 1
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Table 2.2 Parameter notation

tr Time spent for packet routing decision (cycles)
ts Time spent for switching (cycles)
tw Time spent for transmitting a flit between two adjacent routers (cycles)
m Average size of packets (flits)
Lb The latency of body flits
LS→D Average packet latency from IPS to IPD (cycles)
L Average packet latency in the network (cycles)
IPN The IP core located at address N
RN The router located at address N
ICi

N The ith input channel in router RN

OCj
N The jth output channel in router RN

IBi
N Capacity of the buffer in ICi

N (flits)
OBj

N Capacity of the buffer in OCj
N (flits)

PS→D Probability of a packet is generated in IPS and is delivered to IPD
(

∑S∑DPS→D = 1
)

λ N Average packet injection rate of IPN (packets/cycle)
λ N

i→ j Average packet rate from ICi
N to OCj

N (packets/cycle)
λ j

N Average packet rate to OCj
N (packets/cycle)(

λ N
j =∑i

λ N
i→ j

)

PN
i→ j Probability of a packet entered form ICi

N to be exited from OCj
N

μ j
N Average service rate of the OCj

N (packets/cycle)
CSN

j
Coefficient of variation (CV) for service time of the OCj

N

CA CV for interarrival time of packets
ρ j

N The fraction of time that the OCj
N is occupied

W N
i→ j Average waiting time for a packet from ICi

N to OCj
N (cycles)

and diameter of the network. In addition, the index of all ejection channels is
supposed to be 0. After that, all output channels are divided into some groups based
on their index numbers, so that group k contains all channels with index k.

Determination of the channel service time moments starts at group 0 (ejection
channels) and works in ascending order of group numbers. Therefore, the waiting
time from lower numbered groups can then be thought of as adding to the service
time of packets on higher numbered groups. In other words, to determine the waiting
time of channels in group k, we have to calculate the waiting time of all channels in
group k− 1. This approach is independent of the network topology and works for
all kinds of deterministic routing algorithm, whether minimal or non-minimal.

In the ejection channel of RN, the head flit and body flits are accepted in ts + tw
and Lb cycles, respectively. Therefore, we can write S̄N

1 = ts + tw +Lb and since the
standard deviation of packet size is known, we can easily compute CSN

1
. Now, by

using Eq. 2.1, the waiting time of input channels for ejection channel, W N
i→ j, can be

determined for all nodes in the network, where 2≤ i≤ p.
Although the moments of service time can be computed simply for all ejection

channels, service time moments of the other output channels cannot be computed
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in a direct manner by a general formula, and we have to use a more complicated
approach. Now, we can estimate the first moment or average service time of OCi

M as

S̄M
i = ∑q

k=1PN
j→k

(
ts + tw+ tr +W N

j→k + S̄N
k − (IBN

j +OBN
k

)×max(ts, tw)
)

(2.4)

(
sM

i

)2
= ∑q

k=1PN
j→k

(
ts + tw+ tr +W N

j→k + S̄N
k − (IBN

j +OBN
k

)×max(ts, tw)
)2

(2.5)

where PN
i→ j is the probability of a packet entered form ICj

N to be exited from OCk
N

and equals

PN
j→k = λ N

j→k/λ M
i (2.6)

Here, we should remind that to calculate S̄M
i and

(
sM

i

)2
all values of S̄N

k (1≤k≤q)
must be computed before. Finally, the CV of channel service time for OCi

M can be
given by

C2
SM

i
=
(
sM

i

)2
/
(
S̄M

i

)2 − 1 (2.7)

Now, we are able to compute the average waiting time of all output channels
using Eq. 2.1. After computing W N

i→ j for all nodes and channels, the average packet

latency between any two nodes in the network, LS→D, can be calculated. The
average packet latency is the weighted mean of these latencies.

L = ∑S∑D
PS→D ×LS→D (2.8)

where PS→D is the probability of a packet is generated in IPS and is delivered to
IPD. LAR framework uses the simulated annealing heuristic to minimize the average
packet latency L as described briefly in the next subsection.

2.3.5.3 Simulated Annealing

Simulated Annealing is a stochastic computational method for solving the global
optimization problem in a large search space. It is often used when the search space
is discrete. For instance, simulated annealing has been applied to some computer-
aided design (CAD) problems such as module placement [21] and packet routing
[15]. For such problems, simulated annealing may be more efficient than exhaustive
enumeration. While simulated annealing is unlikely to find the optimum solution,
it can often find an acceptably good solution in a fixed amount of time. Simulated
annealing was independently proposed as an optimization technique in 1983 [17]
and 1985 [3]. This technique stems from thermal annealing in metallurgy which
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aims to increase the size of crystals and reduce their defects by heating a material
and then slowly lowering the temperature to give atoms the time to attain the lowest
energy state.

To simulate the physical annealing process, the simulated annealing algorithm
starts with an initial solution and then at each iteration, a trial solution is randomly
generated. The algorithm accepts the trial solution if it lowers the objective function
(better solution), but also, with a certain probability, a trial solution that raises the
objective function (worse solution). Usually the Metropolis algorithm [2] is used as
the acceptance criterion in which worse solution are allowed using the criterion that

e−ΔE/T > R(0,1) , (2.9)

where ΔE is the difference of objective function with current and trial solutions
(negative for a better solution; positive for a worse solution), T is a synthetic
temperature, and R(0,1) is a random number in the interval [0,1]. Typically this step
is repeated until the system reaches a state that is good enough for the application, or
until a given computation budget has been exhausted. By accepting worse solutions,
the algorithm avoids being stuck at a local minimum in early iterations and is
able to explore globally for better solutions. Detailed information about simulated
annealing approach can be found in [17].

As mentioned in Sect. 2.3.5.1, objective function is the average packet latency
and decision variables are represented by the routing set X = {x1,x2, . . . ,xf } where
xi is the path number for flow i (1≤ xi ≤ ni). Let X = {x1,x2, . . . ,xr, . . . ,xf } be the
initial routing set. To choose a trial routing set Xnew = {x1,x2, . . . ,xr

new, . . . ,xf}, we
generate a random number r where 1≤ r ≤ f to choose a flow, and then generate
another random number xr

new where 1≤ xr
new ≤ nr and xr

new �= xr to choose another
path for flow r. Using analytical model describe in Sect. 2.3.5.2, we estimate the
average packet latency for current and trial routing set.

2.4 Experimental Results

To evaluate the capability of the proposed framework, we developed a discrete-
event simulator that mimics the behavior of routing algorithm in the networks at the
flit level. Due to the popularity of the mesh network in NoC domain, our analysis
focuses on this topology but LAR framework can be equally applied for other
topologies without any change. Through all the experimental results, DOR routing is
considered as the initial solution for the simulated annealing algorithm. We compare
the performance of LAR with DOR which becomes XY routing algorithm in 2D
mesh networks.

To achieve a high accuracy in the simulation results, we use the batch means
method [20] for simulation output analysis. There are ten batches and each batch
includes 1,000 up to 1,000,000 packets depending on the workload type, packet
injection rate, and network size. Statistics gathering was inhibited for the first batch
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to avoid distortions due to the startup transient. The standard deviation of latency
measurements is less than 1.8% of the mean value. As a result, the confidence level
and confidence interval of simulation results are 0.99 and 0.02, respectively.

For the sake of comprehensive study, numerous validation experiments have been
performed for several combinations of workload types and network size. In what
follows, the capability of LAR will be assessed for both synthetic and realistic traffic
patterns. Since their applications differ starkly in purpose, these classes of NoC have
substantially different traffic patterns.

2.4.1 Synthetic Traffic

Synthetic traffic patterns used in this research include uniform, transpose, shuffle,
bit-complement, and bit-reversal [5]. After developing models describing spatial
traffic distributions, we should use an appropriate model to model the temporal
traffic distribution. In the case of synthetic traffics, we use the Poisson process
for modeling the temporal variation of traffic. It means that the time between two
successive packet generations in a core is distributed exponentially. The Poisson
model widely used in many performance analysis studies, and there are a large
number of papers in many application domains that are based on this stochastic
assumption.

The average packet latencies in the 4× 4 and 8× 8 mesh networks are plotted
against offered load in the network in Figs. 2.5 and 2.6, respectively. We observe
that under uniform and bit-complement traffic patterns LAR converges to DOR,
because in such traffic patterns the average packet latency is minimum for DOR. It
means that the simulated annealing algorithm is not able to find better routes and
the final solution is the same as initial solution. This result is consistent with other
results reported in [4, 9, 12, 19]. The main reason is that the DOR distributes packets
evenly in the long term [9]. Previous works, Odd-Even [4], turn model [9], DyAD
[12], and APSRA [19] indicate that in the case of uniform traffic, their proposed
approaches underperform DOR. However, as can be seen in Figs. 2.5a and 2.6a, our
proposed framework has the same performance as DOR for different traffic loads.

Figure 2.5b, c compare the latency of DOR and LAR in 4× 4 mesh network
under transpose and bit-reversal workloads, respectively. It can be vividly seen that
LAR considerably outperforms DOR. Also, in the case of 8× 8 mesh network, LAR
has better performance than DOR as shown in Fig. 2.6b, c.

Figures 2.5d and 2.6d reveal that under shuffle traffic pattern LAR slightly
outperforms DOR. Table 2.3 shows the maximum sustainable throughput of the
network for each workload and for each routing algorithm in 4× 4 and 8× 8 mesh
networks. It also shows the percentage improvement of LAR over DOR and reveals
that on average LAR outperforms DOR. The maximum load that the network is
capable of handling using LAR is improved by up to 205%.

Also, the performance of LAR framework is compared against DyAD routing
scheme [12] which combines deterministic and adaptive routing algorithms. We
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Fig. 2.5 Average packet latency under (a) uniform and bit-complement, (b) transpose, (c) bit-
reversal, and (d) shuffle traffic patterns in 4× 4 mesh network

Table 2.3 Improvement in
maximum sustainable
throughput of LAR as
compared to DOR for
different synthetic workloads

4× 4 mesh network 8× 8 mesh network

Workload DOR LAR Impr. DOR LAR Impr.

Uniform 7.4 7.4 0 15.9 15.9 0
Transpose 3.8 11.6 205% 7.7 10.5 36%
Bit-comp. 5.6 5.6 0 8.8 8.8 0
Bit-rev. 3.8 11.6 205% 7.6 9.2 21%
Shuffle 6.6 7.4 12% 12.2 13.4 10%

simulate the uniform and transpose workloads on the similar architecture (6× 6
mesh network) and compare their improvement over DOR. Table 2.4 shows the
percentage improvement of DyAD and LAR over DOR. In case of uniform
workload, DyAD underperforms DOR while LAR has the same performance as
DOR. In case of transpose traffic pattern, DyAD and LAR give about 62% and 60%
improvement over DOR, respectively. This means that our deterministic routing
policy can compete with adaptive routing policies (DyAD switches to adaptive mode
under high traffic load) and meanwhile guarantees in-order packet delivery.



34 A.E. Kiasari et al.

a

c d

b

50

100

150

200

250

300

0 5 10 15

La
te

nc
y 

(c
yc

le
s)

Offered traffic (flits/cycle)

Uniform & Bit Complement Traffic Patterns

Bit complement - DOR
Bit complement - LAR
Uniform - DOR
Uniform - LAR

50

100

150

200

250

300

0 2 4 6 8 10

La
te

nc
y 

(c
yc

le
s)

Offered traffic (flits/cycle)

Transpose Traffic Pattern

DOR
LAR

50

100

150

200

250

300

0 3 6 9

La
te

nc
y 

(c
yc

le
s)

Offered traffic (flits/cycle)

Bit Reversal Traffic Pattern

DOR
LAR

30

120

210

300

0 3 6 9 12

La
te

nc
y 

(c
yc

le
s)

Offered traffic (flits/cycle)

Shuffle Traffic Pattern

DOR
LAR

Fig. 2.6 Average packet latency under (a) uniform and bit-complement, (b) transpose, (c) bit-
reversal, and (d) shuffle traffic patterns in 8× 8 mesh network

Table 2.4 Improvement in
maximum sustainable
throughput of DyAD and
LAR over DOR

Improvement over DOR

Workload DyAD LAR

Uniform −21% 0
Transpose 62% 60%

2.4.2 Realistic Traffic

In case of realistic traffic, we consider two virtual channels for links to show
the consistency of proposed framework with multiple virtual channel routing.
As realistic communication scenarios, we consider a generic multimedia system
(MMS) and the video object plane decoder (VOPD) application. MMS includes an
H.263 video encoder, an H.263 video decoder, an mp3 audio encoder, and an mp3
audio decoder [13]. The communication volume requirements of this application
are summarized in Table 2.5. VOPD is an application used for MPEG-4 video
decoding and its communication graph is shown in Fig. 2.3. Several studies reported
the existence of bursty packet injection in the on-chip interconnection networks for
multimedia traffic [22, 25].
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Table 2.5 MMS application traffic requirement [13]

src dst vol. (bytes) src dst vol. (bytes)

ASIC1 ASIC2 25 DSP2 DSP1 20,363
ASIC1 DSP8 25 DSP3 ASIC4 38,016
ASIC2 ASIC3 764 DSP3 DSP6 7,061
ASIC2 MEM2 640 DSP3 DSP5 7,061
ASIC2 ASIC1 80 DSP4 DSP1 3,672
ASIC3 DSP8 641 DSP4 CPU 197
ASIC3 DSP4 144 DSP5 DSP6 26,924
ASIC4 DSP1 33,848 DSP6 ASIC2 28,248
ASIC4 CPU 197 DSP7 MEM2 7,065
CPU MEM1 38,016 DSP8 DSP7 28,265
CPU MEM3 38,016 DSP8 ASIC1 80
CPU ASIC3 38,016 MEM1 ASIC4 116,873
DSP1 DSP2 33,848 MEM1 CPU 75,205
DSP1 CPU 20,363 MEM2 ASIC3 7,705
DSP2 ASIC2 33,848 MEM3 CPU 75,584

r0

r1

l0 l1

Fig. 2.7 Two-state MMPP
model

Poisson process is not the appropriate model in case of bursty traffic; conse-
quently, we used Markov-modulated Poisson process (MMPP) model as stochastic
traffic generators to model the bursty nature of the application traffic [5, 8]. MMPP
has been widely employed to model the traffic burstiness in the temporal domain [8].
Figure 2.7 shows a two-state MMPP in which the arrival traffic follows a Poisson
process with rate λ 0 and λ 1. The transition rate from state 0 to 1 is r0, while the rate
from state 1 to state 0 is r1.

Since in such systems, there are various types of cores with different bandwidth
requirements, placement of tasks on a chip has strong effect on the system
performance. To find a suitable mapping of these applications, we formulate another
optimization problem to prune the large design space in a short time and then again
use the simulated annealing heuristic to find a suitable mapping vector. Initially, we
map task i to node i and then try to minimize the average packet latency through
the simulated annealing approach. Figure 2.8a shows that in the case of MMS
application and DOR, for the initial mapping M1, average packet latency equals 87
and after a certain number of tries, the mapping vector converges to the mapping M4
with average packet latency= 41. Furthermore, average packet latency values for
mappings M2 and M3, which are two local minimum points in simulated annealing
process, are shown in the figure.
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Fig. 2.8 The effect of mapping and routing on the performance of (a) MMS application and
(b) VOPD application

After the mapping phase, we apply the LAR framework to these four mapping
vectors. Figure 2.8a reveals that in case of mapping M1, LAR can significantly
reduce the average packet latency from 87 to 67. However, for more efficient
mapping vectors (M2, M3, and M4), we achieve less improvement. Specially, in
the case of best mapping (M4), average packet latency is reduced insignificantly
from 41 to 40. It is reasonable that DOR is latency-aware for the best mapping,
because during the mapping problem solving process, we fix the routing policy to
DOR and strive to minimize average packet latency for this routing policy. Likewise,
as shown in Fig. 2.8b, for the VOPD application, the analysis result is the same as
MMS application.

Figure 2.8 reveals that in case of application-specific traffic patterns, the im-
provement in the performance of the routing schemes highly depends on how the
application tasks are mapped to the topology. This fact was not considered in the
related works such as [16]. Nowadays, in embedded systems-on-chip there are
several different types of cores including DSPs, embedded DRAMs, ASICs, and
generic processors which their places are fixed on the chip. On the other hand, such a
system hosts several applications with completely different workload. Furthermore,
modern embedded devices allow users to install applications at run-time, so a
complete analysis of such systems is not feasible during design phase. As a result, it
is not feasible to map all applications such that the load is balanced for all of them
with specific routing algorithm and we should balance the load in routing phase.

In this section we used the LAR framework to find low latency routes in the mesh
network. Due to simplicity, regularity, and low cost merits of 2D mesh topology, it
is the most popular one in the field of NoC. However, for large and 3D NoCs, which
will be popular in the future, the communication in mesh architecture takes a long
time. In the next subsection we use LAR to find deadlock-free paths in an arbitrary
topology.
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Fig. 2.9 (a) A custom topology and (b) prohibited turns

Table 2.6 Routing table for
node 0 of topology in
Fig. 2.8a

dst. route dst. Route

0 No packet 5 SE, SE, EJ
1 SW, EJ 6 SW, SW, SW, EJ
2 SE, EJ 7 SE, SW, SW, EJ
3 SW, SW, EJ 8 SW, SE, SE, EJ
4 SW, SE, EJ 9 SE, SE, SE, EJ

2.4.3 Find Routes in an Arbitrary Topology

To show the capability of LAR framework to find deadlock-free routes in an
arbitrary topology, we consider the topology shown in Fig. 2.9a. LAR reports that
under uniform traffic pattern there are two cycles in the corresponding CDG and
by prohibiting turns 52–21 and 87–73 (shown in Fig. 2.9b) the deadlock-freedom is
guaranteed.

Table 2.6 shows the routing table for node 0 of the topology in Fig. 2.9a. Each
route in the table specifies a path from node 0 to a given destination as channels
name. SE, SW, and EJ specify South East, South West, and ejection channels,
respectively. To route a packet, the routing table is indexed by destination address
to look up the pre-computed route by LAR. This route is then added to the packet.
Since there are seven channels in this network (E, S, NE, NW, SE, SW, and EJ),
they can be encoded as 3-bit binary numbers. Also, there are techniques to reduce
the size of routing tables [5, 19].

2.5 Conclusion

On-chip packet routing is extremely crucial because it heavily affects performance
and power. This calls for a great need of routing optimization. However, due to the
diverse connectivity enabled by a network and the interferences in sharing network
buffers and links, determining good routing paths, which are minimal and deadlock
free for traffic flows, is nontrivial. In this chapter, we have addressed the latency-
aware routing problem. Using an analytical model, we first estimate the average
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packet latency in the network, and then embed this analysis technique into the loop
of optimizing routing paths so as to quickly find deterministic routing paths for all
traffic flows while minimizing the latency.

The proposed framework is appropriate for reconfigurable embedded systems-
on-chip which run several applications with regular and repetitive computations on
large set of data, e.g., multimedia and computer vision applications. LAR can not
only design minimal and deterministic routing, but also can implement non-minimal
routing without virtual channels in arbitrary topology.
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